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The theory of the irreducible representations of space groups and the symmetry 
projection of crystal wave functions can be written in a more concise form, when the 
irreducible representations of arbitrary finite groups can be calculated. Two computer 
programs have been written. Starting with a minimum of input they produce crystal 
space orbitals and plane waves respectively, symmetry adapted to the irreducible 
representations of any one of the 230 space groups. The irreducible representations 
are generated by the program itself. 

1. INTRODUCTJON 

It is a laborious task to symmetrize crystal wave functions with respect to the 
irreducible representations (irreps for short) of the space groups. A computer 
program for symmetry adaptation of crystal space orbitals was written by 
Flodmark [l]. The present work is a generalization of his ideas. 

Only in recent years there have appeared tables of the irreps of the space groups 
(Kovalev [2], Miller and Love [3], Zak e.a. [4], Bradley and Cracknell [5]). 
Luehrman [6] has written a program for symmetrizing plane waves with respect 
to the symmorphic space groups. Donato and Ruggeri [7] and Conklin [8] wrote 
similar programs as a part of their programs for energy band calculations. The 
tables of Miller and Love [3] are the most extensive ones and naturally they used 
a computer program, to produce these tables. They used the method of 
Raghavacharyulu [9]. 

It is possible to write a symmetry projection program, which uses these tables 
as input. But this would still leave much work for the user of such a program, since 
he would have to supply to the computer the contents of these tables, the point 
groups of the k-vector etc. (Flodmark’s original program [l] was written in this 
way). It is not very practical to have the complete tables stored, since they consist 
of more than 1000 pages printed in code notation, where one letter represents a 
complete matrix. 
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It seemed more practical to let the computer calculate the necessary irreps at the 
moment when they are needed during the run of the symmetry adaptation program. 
In this way the user of such program needs to supply only a minimum of 
information as input. The problem of finding the irreps of a space group can be 
reduced to that of finding the irreps of a finite group. Since we have a general 
method to calculate the irreps of a finite group [lO--141 we could write such a 
program. Part of this work was already reported in [ 121 and [ 151. 

This method enables us to put the theory of irreps of the space groups in a more 
concise form. The author hopes that Section 2 may be an equivalent for space 
groups of Coleman’s article on the symmetric group [16]. 

In Section 3, 4 and 5 we give the formulas for the projection matrices which are 
calculated in the programs. A short description of the programs is given in 
Section 6. 

2. THE SPACE GROUPS MADE EASY 

First we establish the usual set of conventions, with which the reader is assumed 
to be familiar. He can check them in most books on solid state theory and group 
theory applied to quantum mechanics. 

A crystal lattice vector is denoted by 

n = nlal + n3a3 + n3a3 (2-l) 

where ni are integers and the ai primitive lattice vectors. The reciprocal primitive 
lattice vectors are denoted by bi , i = 1, 2, 3. and 

bi = 8j X ak 

ai * (aj X ak) 

where i, j, k is a cyclic permutation of the indices 1, 2, 3. A reciprocal lattice vector 
is denoted by 

K = 2n(&b, + Kzbz + K3b3) (2.3) 

with integers Kc and 

exp(iK . n) = 1 (2.4) 

because of (2.2). 
A space group operator F = (P ) t) transforms a vector r into 

(PlQr = Pr+t (2.5) 
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Here P is a rotation or rotation-inversion, with respect to a fixed point, usually the 
origin of the coordinate system. In Cartesian coordinates r is represented by a three- 
dimensional column r and P by a three-dimensional orthogonal matrix P. A pure 
translation is denoted by (E ) t) and a pure rotation by (P IO) or just P for short. 
The identity operator is (E I 0). The product of two space group operators is given 
by 

(Pl I t1wz I tz) = (PlP, I p1tz + t1> (2.6) 

and the inverse of F is 

F-1 = (p-1 / - P-It) (2.7) 

DEFINITION. The lattice translation group T,, consists of all the elements 
(E I n) with n being a crystal lattice vector (2.1). We use the cyclic boundary con- 
ditions, stating that 

(E / al)N1 = (E ) a2)Nz = (E I aa)N8 = (E I 0) (2.8) 

where N1 , N, , N, are large integers and 

N = N,N,N, (2.9) 

is the number of unit cells in the region of periodicity and the number of elements 
in T,, . When we use (2.6) for the elements of T,, we find that it is an abelian group, 
so it has N one dimensional irreps 

yk((E I II)) = exp(--ik * n) (2.10) 

with 
(2.11) 

ki = 0, 1, 2 ,..., Ni - 1, i= 1,2,3 (2.12) 

yk and Yk+k denote the same irreps because 

exP(-i@ + K) . n) = exp( --ik . II) (2.13) 

and therefore we can label the irreps of T, with another set of k-vectors than (2.12). 
We choose 

ki = q + l,? + 2 )...) 0, 1, 2 ,...) -$ (2.14) 

We have supposed NC to be even. 
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DEFINITION. The first Brillouin zone consists of all points k, that lie closer 
to K = 0 than to any other reciprocal lattice point. Its boundaries are the perpen- 
dicular bisecting planes of the lines connecting K = 0 with the nearest (and some- 
times with the next nearest) reciprocal lattice points K. 

So all the irreps of T, are given by (2.10) where k has the form (2.11) and lies 
within or at the boundary of the Brillouin zone. 

DEFINITION. The space group G of the crystal is the maximum set of operators 
Fi = (Pi I ui + n) which map the crystal onto itself when acting on the atomic 
positions h, TV, v etc. according to 

(Pi 1 ui + n)h = P,h + ui + n (2.15) 

Here the n are lattice vectors, ui are vectors with lattice coordinates smaller than 1 
and they are uniquely determined by the index i when the reference point of the 
point group operators Pi has been chosen. We have P, = E, u1 = 0 and for 
symmorphic space groups all ui = 0. Note that T, is an invariant subgroup of G. 

DEFINITION. The point group GP of the space group G is the group of operators 
{Pi} occurring in the elements Fi = (Pi / Ui + n) of the space group. Note that 
only for symmorphic space groups GP is a subgroup of G. GP is a finite group and 
each element Pi has finite order ei 

(Pi)'* = E, ei finite integer (2.16) 

Then 

(Pi j Ui + n)‘* = (E 1 m) (2.17) 

is a pure lattice translation. Because of (2.17) and (2.8) G is a finite group. We 
denote its order by g. 

Each irrep of the space group is also a representation of the subgroup Tn. 
But restricted to the elements of T. that representation is in general reducible 
containing one or more Yk several times. We can now classify the irreps of G by 
the irreps of T. that they subduce: ikr is such an irrep of G, that when jkr((E ) n)) 
is decomposed into irreps of T,, , it contains 7,‘ . The superscript j then enumerates 
the different irreps of this type. 

DEFINITION. The little group of the second type of a space group G, with 
invariant subgroup T,, , of the wave vector k (corresponding to irrep Yk of T.) is 
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the subgroup of G (itself also a space group), denoted by Gk , for with the space 
group operators Fi = (Pi I ui + n) are such that 

Pik = k + K (2.18) 

where K is a reciprocal lattice vector (2.3). 

Since Gt is also a space group, it contains T,, as an invariant subgroup. One can 
then form the cosets T,(P, I ui), with (Pi I u,) E G1, and these cosets form a factor 
group GIT,. 

DEFINITION. An allowable irrep jkrA of Gk is one for which 

jkrA((E 1 n)) = exp(--ik . n) E (2.19) 

where E is a unit matrix of the dimension &k of jkrA . 

THEOREM 1. All the irreps ikr of G can be constructed by taking all the allowable 
irreps jkr,, of Gk and inducing from them the irreps of G; to each jkrA of Gk corre- 
sponds one ikr of G. 

General accounts of the theory and proofs of the theorems can be found in the 
references [ 17-221. 

The induction of ikr from jkrA is formed as follows: Decompose G into cosets 
Of subgroups Gk : 

G = {Gk 9 (pz 1 Uz) Gk > (pt, 1 W) Gk ,-.> (2.20) 

There are g/gk = nk cosets, where gk is the order of Gk . We now renumber the 
elements of G in such way that the indices 1 of the coset representatives (P, I UJ 
are simply given by 1 = 2, 3, 4 ,..., nk . If jkr, is an allowable irrep of Gk of 
dimension lfk , then the dimension of jkr is 

Ljk = ljknk (2.21) 

The matrices of ikr have a subdivision into nk matrix blocks of dimension ljk . 
The subblocks are labeled with row- and column indices 1, which run from 1 to 
nk and correspond to the enumeration of the coset representatives (P, 1 u& 

So the irrep of G is of the form 

(2.22) 
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Each subblock ikr&(P 1 u + II)) is defined by 

ikLcw I u + n)> = jkLKP, I a-v I u + n)(p I w)) 4~ (2.23) 

with A,,, = 1 if (P, 1 q)-l(P 1 u + n)(P1, 1 ul,) E Gk ; otherwise A,,, = 0. So the 
problem is reduced to that of finding the allowable irreps of Gr . 

DEFINITION. The little point group Pk is the point group of the space group Gk . 

Pk = {Pi, with (Pi ( IIt) E Gk} (2.24) 

THEOREM 2. Zf one or more of the following conditions is fu&ilied, 

1. k lies inside the first Brillouin zone 

2. G is a symmorphic space group 

3. Gk is a symmorphic space group 

then all the allowable irreps of Gk are of the form 

V,((P, 1 ui + n)) = exp(-ik . (ui + n)) jr(P,) 

where jr(P,) is the j-th irrep of the little point group Pk of dimension li . 

(2.25) 

So then also ljk = li . In this case there are as many allowable irreps of Gk as 
there are irreps of Pk . Note that condition 2 always includes condition 3 but G 
may be nonsymmorphic with still Gk symmorphic. 

If Theorem 2 cannot be used, that is when k lies on the Brillouin zone boundary 
and Gk is nonsymmorphic, then we must follow a slightly more complicated way 
to find the allowable irreps of Gk . 

DEFINITION. Tk is a subgroup of T, with elements (E 1 n) such that 

exp(-ik . n) = 1 

Decompose Gk into cosets of Tk 

‘%i = {Tk , (E 1 m) Tk ,..., (pi I 5) Tk > (p, 1 “i + m) Tk ,...> 

where the elements (E 1 m) do not belong to Tk , that is 

exp(-ik * m) # 1 

These cosets form a factor group Gk/Tk . 

(2.26) 

(2.27) 

(2.28) 

DEFINITION. The little group of k of the first kind is the group Gk/Tk . Its 
elements are the cosets of (2.27). It .is a finite group of not too high order. 
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DEFINITION. ITa’ is an allowable irrep of G,/T, if 

T,‘((E 1 m) Tk) = exp(-ik . m) E (2.29) 

THEOREM 3. All the aiiowabfe irreps of Gk can be formed from the allowable 
irreps of Gk/Tk as follows. 
Write each (Pi ( ui + n) E Gk as 

(Pi I ui + 4 = (E I n’)(P, I ui + m) (2.30) 

with (Pi / Ui + m) being a coset representative in (2.27) and (E 1 n’) E Tk . Then 

jkrA((pj / Ui + U)) = jkrA’((Pi 1 Ui i- III) Tk) 

= exp( - ik . m) jkraqPa ( ui) Tk) 
= exp(-ik . n) jkray(Pi I I&) Tk) (2.31) 

The group Gk/Tk is in general not isomorphic to a point group. But its multi- 
plication table can easily be constructed as follows: label each element (Pi I ui + m) 
of the abstract group with the two indices i and s, where i is the index for the 
corresponding point group operator Pi and 

s = exp(--ik * (IQ + m)) (2.32) 

is determined by the translational part of the coset representative. Then for any 
product of two elements of G,/T, , the first index of the product is determined from 
the multiplication table of the point group PI, and the second index is calculated 
from the multiplication rule (2.6) and its definition (2.32). As soon as the multi- 
plication table has been determined we can use the general method of finding the 
irreps of a finite group [lO-141. Finally we select the allowable irreps from the 
complete set of irreps of Gk/Tk by a simple inspection of the representatives of 
the group elements selecting those irreps for which (2.29) holds. 

This concludes the reduction of our problem. We started with the space group 
G for which the order g is a multiple of N, a very large number, in principle N + co. 
We have shown that all the irreps jkr of G, which subduce a specific yL of T. can 
be found from the allowable irreps of G k. And the allowable irreps of GI, can be 
formed from the irreps of Pk or Gk/Tk . Their orders are independent of N. In 
order to specify a k-vector one only gives the fractions 

(2.33) 

in (2.11). The numbers N< and N do not play any further role in the theory of 
h-reps, than that they simplify the proofs of the theorems, but these can also be 
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worked out for discrete infinite space groups for which there is no restriction 
(2.8) for T, . 

The material above is just the usual theory of induced representations, conjugate 
representations, little groups etc. But we have been able to put it in a concise form 
because we cut off the discussion when we had reduced the problem to that of 
forming the irreps of a finite group of reasonable size, since that is a solved 
problem. A general method of calculating the irreps of arbitrary finite groups of 
such a size has been developed earlier [IO-141. 

3. SYMMETRY PROJECTION 

We introduce space group operators E that act on functions. The accent on fi 
and other operators is to distinguish them from the previously introduced operators 
that act on position vectors. Definition of I? 

P$(r) = #(F-k) (3.1) 

We shall interpret formula (3.1) as follows. At point r the function P$ has the 
value of the function # at point F-4. Other interpretations are possible [23], but 
we shall stick to this one. If F,F, = F3 then 

= #(F;lr) = P&(r) (3.2) 

according to (3.1). So the group of operators P and F are isomorphic, and thus we 
shall drop the accent when it is not important and when misunderstanding is not 
possible. 

So according to (3.1) and (2.7) 

(P I t) #(r) = #((P-l 1 -P-‘t) r) = #(P1(r - t)) (3.3) 

The general formula for a symmetry projection operator [24] of a finite group of 
unitary operators pi of order g is 

e,, = 4 $ jr*(Fi),,13, (3.4) 
21 

jr is the j-th unitary irrep of the group, lj its dimension, jr*(Fi)dd is the complex 
conjugate of the d-th diagonal element of the representative of Fi . 
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When the group is T,, and the irrep is Yk (2.10) then (3.4) becomes 

kS = $ c exp(ik . n)(E 1 n) 
n 

479 

(3.5) 

where n = &, qai, ~ti = 0, 1, L..., Ni - 1. 

DEFINITION. The Bloch function $k of a function $(r) is the result of kL? acting 
on $(r): 

#k(r) = kS#(r) = i C exp(ik * n) $(r - n) 
0 

(3.4) 

Note that the function $k is not yet normalized. Starting with a set of basis functions 
J, = ($1 , $2 ,--*7 #r) one can form a Bloch basis *k 

It follows immediately from the way of construction of iV of G from jkrA of 
Gk in (2.22), (2.23) that, if vi, i = 1, 2,..., ljk is a basis for the irrep jkrA of Gk , 
then 

(P, I u,) vi , i = 1, 2 ,..., lik , 1 = 1, 2,..., tfk (3.8) 

is the i-th function in the I-th block of a basis function of irrep jrr of G. Formula 
(3.4) then has the form 

bk jkSdd c - 
c 

gk (PlU+m)EGk 
jkr*w I u + m)h (p I u + 4 (3.9) 

Here m takes all the N values as in (3.5) and if the point group Pk of Gk is of order 
gk’ then 

gk = Ngk’ (3.10) 

When (3.9) acts on a Bloch function (3.6), we get by means of (2.31) and (2.6) 

eiksm jkrA”((P 1 u))dd (p 1 u)(E / P-‘m) $k (3.11) 
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Now we have 

(E 1 P-‘m) &(r) = (E 1 P-‘m) & 1 eik.” #(r - n) 
” 

1 = N e-ik-m F e’ tk~(o+P-‘m) I,@ - (n + Pm)) = e-ik.m t,b&) (3.12) 

which is just the characteristic property of a Bloch function. We used in (3.12) 
the fact that for P E Pk , exp(--ik . P-lm) = exp(--iPk . m) = exp(--ik . m). 
Then (3.11) becomes 

jkSdd+k = Fk ,p, +m)GGk ljk .c 
jkrA*((p 1 U&cl (p I U) #k (3.13) 

The terms under the summation sign are independent of m, so each different term 
occurs N times and we can simplify (3.13) to 

jk&,$k = $f c jkrA*((p I Uh (p 1 U> #k 
PSPk 

(3.14) 

where the summation now runs over only gk’ terms. For the cases where Theorem 2 
can be applied, that is when 

jkr,((p 1 II)) = e-ik’u jr(P) (3.15) 

the formula can be simplified further to 

” ‘“sd,#k = g,’ ,; jr*tphd (p / O) #k (3.16) 
k 

With (3.14) we have obtained a formula which is independent of the number N. 

4. SYMMETRY PROJECTION OF PLANE WAVES 

An augmented plan wave (APW) is a continuous function that is equal to a 
plane wave outside the sphere, inscribed in the Wigner Seitz cell. A space group 
operation transforms it to a similar function, continuous and equal to a plane 
wave outside a sphere. Therefore APW’s transform like plane waves and if 

# = c Ol,ei(k+K,).’ 

n 
(4.1) 
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is symmetry adapted to some row of some irrep of a space group, then 

(4.2) 

is also symmetry adapted. Here @& is an AP W that outside the sphere behaves 
like exp(@ + K,,) ’ r). So we can restrict our discussions to plane waves; all 
formulas will also be valid for APW’s. 

Given a basis of plane waves 

(#kl 3 #kZ Y-*, #kr) (4.3) 

where 

#kn = exP(i(k + J&J * r> (4.4) 

and K, is a reciprocal lattice vector (2.3). We want to obtain a basis symmetry 
adapted to (ikr,J,, of Gk . If we have constructed such a basis, we obtain the basis 
that is symmetry adapted to (fkQaa of G according to (3.8) 
Then we determine Pk , the point group of k, of order gk’ with elements Pi E Pk 
and the reciprocal lattice vectors K’ according to 

which gives 

P,k = k + I(i (4.5) 

Pi(k + K,J = k + I(i + PiK, = k + Kni 

Now extend the basis (4.4) so that all the functions 

#k+IC:, = exp(@ + Kb) * r) 

(4.6) 

(4.7) 

are included for all Pi E P,, . Let this expanded basis be 

where we have supposed that the basis now consists of s plane waves. For such 
basis functions we then have 

(Pi I of> #kn = (Pi I of) exp(@ -I- JLJ * r) = exp(i(k -I- K,) l UT’ I -Phi) r> 

= exp(-iQ + I(,*) l ni) exp(i(k + Kni) * r) 

= exp(-i(k + K,‘) * Iii) #km (4.9) 

for some index m. Thus 

(8 1 4) *k = *kr(cPi 1 I%>) (4.10) 
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where r((P, 1 b)) is an s x s matrix with 

rw I mnn = exp(--i(k + Km) . ud (4.11) 

if Pi(k + K,) = k + K, and vanishing otherwise. Then we obtain from (3.14) 
and (4.10) that 

W&$k = Q’r%,, (4.12) 

with 

(ikSdJma zz .b- gk, .:p jkrA*wi I uddd rv, I ui)),, 
t k 

(4.13) 

Now orthonormalize the columns of ikS,, , skipping vanishing columns. The 
remaining columns form a matrix iktd, [l]. 

The elements of each column give the coefficients olpz in the linear combinations 
of plane waves (4.1) that are symmetry adapted to row d of irrep jkrA of Gk . For 
each such linear combination of functions $km one obtains & linear combinations 
functions $/&$m (1 = 1, 2,..., &) according to (3.8), belonging to the d-th row in the 
I-th block of ikI’ of G. 

5. SYMMETRY PROJECTION OF SPACE ORBITALS 

In this section we shall first develop the theory for atoms of only one chemical 
element in the unit cell. Their positions and orbitals are transformed into each 
other by the space group operators. At the end of the section we give then the simple 
generalization to several chemical elements, which shows that each chemical 
element can be treated separately. 

We shall first extend our conventions, because we have to consider trans- 
formations by space group operators of functions in different coordinate systems. 
A function #, defined on the three-dimensional Euclidean space E3 is a mapping 
of points in that space to numbers in the complex plane. The points of ES can be 
described by names like Q, S, etc. or by vectors like q, s. These vectors are then 
position vectors from an origin 0 to the points Q, S etc. By choosing a Cartesian 
coordinate system with origin 0, the vectors can be given by their coordinates 
q, s etc. in this system. We have 

(5.1) 
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Then Q is given by the functional prescription & to obtain the function value for 
a point Q from the three real numbers qo, qy , qr . 

4(Q) = b(q) (5.2) 

If we choose another origin O(c) and Cartesian coordinate axes parallel to the 
first system, we can denote the point Q by the coordinates q’ in this system and 

#<Q> = hdq’) (5.3) 

O(c) has coordinates c in the original coordinate system 0 so that 

q=c+q’ (5.4) 
and 

he,(q’> = $o<c + s’> (5.5) 

Remember that #, & , #0(C) are all different descriptions of the same function. 
Occasionally we may write O(0) for 0. 

We introduce a shorter notation for the function (E \ a) # 

A = (E I 4 # (5.6) 
Also 

@ I 0) + = $0 (5.7) 
and 

(E I b> h = (E I WE I a) 16 = @ I a + b) # = ~4,~~ (5.8) 

If z,L is an atomic orbital for an atom at 0, then #. will be the equivalent atomic 
orbital for an atom at O(a). Usually the description of the function #. will be given 
in the coordinate system O(a), #aO(l)(q). According to (5.5), and (5.6) we have 

thdq) = hofo,(s + 4 = @ I 4 +ooco,h + a> 
= #ooco,((E I a>-Yq + 4) = #ooco,(q) (5.9 

We introduce a notation for the point group operators with different reference 
points. 

(P IO) = P = OP (5.10) 

‘P is the point gr ou o p p erator that leaves O(0) unchanged. Similarly we write 
‘P for a point group operator that leaves O(p) fixed. We define, using Pq = GPq, 

ek44) = hP1q) (5.11) 

"4kd4) = hxa,P-lq) (5.12) 
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in agreement with (3.1). When flp is applied to an orbital $,, for an atom at O(P) 
the resulting function is again an orbital for the atom at O(P). The function $,, has 
been rotated about its center O(r). 

Further we have to investigate the action of ‘p on an orbital for an atom at 
O(p). But we generalize the discussion directly to that of the action of the space 
group operator (“P 1 u), where u is a nonprimitive lattice translation for non- 
symmorphic space groups. 

If we want to operate with (P 1 u) on a function CP’, given as voc,,,(q) in coordinates 
of O(&, we must first rewrite the function as a function of coordinates in O(O), 
since only for such functions the action of (P 1 u) was defined in (3.1). According to 
(5.5) we then have 

Par,(q) = %co,(4 + to (5.13) 

and according to (3.1) we obtain 

(P I 4 hxo,(q + I4 = ~O(O,((P I N-Y9 + IL)) 
= ~oco,(P-"q + P-lp - P-k) 

Let the atomic position or. be transformed by (P I u)-’ into 

(5.14) 

(P 1 u)-1 p = P-$4 - P-C = v + n(F, p, v) (5.15) 

where v is another atomic position vector in the unit cell with origin at n(F, l.~, v). 
Here n(F, y, v) is a lattice vector uniquely determined by F = (P 1 u) and P. So an 
atomic orbital at t.~ is transformed into an atomic orbital at (P 1 u)-l P. Then 
(5.14) becomes equal to 

~oco,P-lq + v + n(F, pL, 4) = h(Y+n(F.C.Y)P1q) 
= v+nmP.v)p ~Ow+nmll.“&l) (5.16) 

where we used (5.12). We can recapitulate these results, taking for # the atomic 
orbital #,, so that we obtain 

(5.17) 

where the convention between P and v is given by (5.15). 
Therefore (P 1 u) z,& will usually be given as function of coordinates in 

Oh + n(F, Y, 9). 
We make a slight generalization, to describe the action of (P 1 u + n’) on #,,+,, 

where n’ and n are lattice vectors. 

(P I u + n? *p+n = (E I n’)(P I u)(E I 4 & = @ I n’)@ I pn)QJ I 4 & 
= (E 1 n’ + Pn) v+n(F.Lc,v)~~y+n(F,r.V,) = Y+m&y+m (5.18) 
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with Y + I@, IL, v) + II’ + Pn = v + m. For later use we note that we can write 
n as 

So we obtain that 

n = P-l(m - n(F, p, v) - n’) (5.19) 

(P I u + n’) $p+n = y+mp#v+m 

Now we assume that we have a basis of L atomic orbitals 

(5.20) 

9, = <1cI,‘, &Ja9...9 SW (5.21) 

for an atom at O(0). Then an equivalent basis for an atom at O(P) is given by 

JI, = <$A #p2,..., v&G,“) (5.22) 

Further we assume that the basis has been chosen to be stable under the operations 
of the point group GP of the space group, so that 

I%, = q+r(p) (5.23) 

where the matrices T(P) form a representation of GP . Similarly 

~Pw, = w’,qp) (5.24) 

We now construct a Bloch basis for atoms at position P in the unit cells, by acting 
with (3.5) on (5.22) obtaining 

%,,, = $ c exp(ik * n)(E I II) Q, = $ c exp(ik * II) Q,,+,, (5.25) 
II n 

A similar Bloch basis is formed for each atomic position v, h etc. in the unit cell. 
Our complete Bloch basis is then 

% = wk# 3 JI,, , % A 

When we operate with (P 1 II + n’) on JI,,, we obtain 

(5.26) 

(P ] u + n’) Q,, = $ C exp(ik * n)(P 1 u + n’) JS+* 
n 

(5.27) 

= $ c exp(ik * n) V+mPQ,+m = $ c exp(ik * n) \II,+, T(P) 
n II 

where we have used (5.25), (5.20) and an equivalent of (5.24). 
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We shall now rewrite the term exp(ik . n) using (5.19). Further we shall assume 
that(PIu+n’)EGk,sothatPk=k+K.Then 

exp(ik * II) = exp(ik * (P-l(m - I@, I”, v) - n’))) 
= exp(ik * (m - n(F, t.~, v) - n’)) 

Then (5.27) becomes equal to 

exp(-ik * (n(F, CL, v) + n’)) & c exp(ik * m) WV+, Lrtp) 
m 

= exp(-ik * (n(F, p, v) + n’)) Wk, T(P) 

So we have obtained that 

(P I u + n’) W,, = W,, exp(--ik . (n(F, p, V) + n’)) T(P) 

When fl = (P I u + n’) acts on the complete Bloch basis (5.26) we get 

P’l’,, = i@(U,, , W,, ,...) = W,F 

with 

F= 

F 1111 F,, F,, .-a 
F w F,, . . . . . 
. . . . . . . . . . . 

and 

Fpy = W’ I 4-l P, v + W’, P, v)) expt--ik * W, P, 4 + n?) LW) 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

with 8((P / u)-’ EL, v + n(F, y, v)) = 1 if (P ) u)-’ IL = v + n(F, EL, v) and zero 
otherwise. When the projection operator (3.9) 

jk&, = - 
:: ,P,n+Lk 

jkr*ttp I u + Odd (P I u + n’) (5.34) 

acts on the Bloch basis wk the terms exp(--ik * n’) in (5.33) will compensate the 
term exp(ik * n’) in jkT*((P ) u + n’)),, so that all terms in the summation with 
the same (P ) u) but different n’ are equal. So each term occurs N times and we can 
restrict the summations to the different (P ) u) with P E Pk , obtaining like in 
(3.14) that 

vw I 4) 
k 

(5.35) 
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When ikSdd operates on wk we get 

jksdd~k = wkjksdd (5.36) 

where the matrix jkS,, has the same structure of subblocks as F in (5.32). To the 
block (jkS,&, do only those elements (P I u) contribute for which 

(P I 111-l P = v + W, P, v) (5.37) 

because of (5.33). Denote this set by G&L, v). Then using (5.31)-(5.33) and (5.36) 
we obtain 

c jkfA*((P I u))~~ exp(-ik * n(F, I”, v)) Lf(P) (5.38) 
(Plu)~G(lr,v) 

with the same conventions for l?jk , gk’ and ikfa*((P 1 u)) as in sections two and 
three. jkfA is given by (2.25) or (2.31). 

With the columns of jkS,, we go through the same procedure as described at the 
end of section four, to obtain the symmetry adapted linear combinations of Bloch 
functions I&, (i = 1, 2,..., L; IL runs over the different atomic sites in the unit cell). 

The generalization of the formulas for the case of several chemical elements in 
the unit cell is simple. Assume that the theory above was developed for atoms of 
chemical element 01. We should then denote the basis (5.21) as wro,, . Since the space 
group operators Fi map the crystal into itself, they will map the position of one 
atom into that of another atom of the same chemical element. Similarly, pi will 
map orbitals of only one chemical element into each other. Let waO consist of 
L, basis functions. Similarly J/,,, will be a stable basis of LB basis functions for an 
atom of chemical element /3 at position O(0). Then (5.23) can be generalized to 

~4, = *,,%(P) (5.39) 

for K = 01, &... Then form the basis 

% = P,, , %ll > Q,, ,...> (5.40) 

When p acts on this basis we obtain 

I%,, = war(p) (5.41) 

where f(P) is blockdiagonal with blocks L*r(P) along the main diagonal. The 
Bloch basis will be 

*k = (*cxk 7 %k , wvk Y.) (5.42) 
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with subbases JlaL of form (5.26). All derivations are then valid for each subbasis 
separately. When the projection operator (5.34) acts on (5.42) we obtain 

W,,J/, = Jl,X,, (5.43) 

with dkS,, blockdiagonal in the same way as f(P) in (5.41). The subblock fkSddu 
is a projection matrix for atoms of chemical element 01 and (jkS,,&, is of the form 
(5.38). 

So each chemical element can be treated separately. 

6. SHORT DESCRIPTION OF THE PROGRAMS 

Two programs were written for the calculation of projection matrices (4.13) and 
(5.38). The programs SYMPRJ and SYMPW symmetrize atomic orbitals (spherical 
harmonics) and plane waves, respectively. 

They have large parts in common, so we shall describe them simultaneously. 
Both contain the program IRREP for calculation of irreps as a subroutine. Both 
use some datasets stored on disks, which have been created by a program PRODAT. 
The program PRODAT is supplied with standard input and it has to be run only 
once per computer. It stores the multiplication tables of the point groups Dbh and 
Oh, from which the multiplication tables of all other point groups can be formed, 
with the help of an indexing system, also created by PRODAT. Further the elements 
of V(P) in (5.38) for spherical harmonics Y,, for I = 0, 1, 2,3 are calculated and 
stored. It is possible to extend the program for larger values of 1. 

Common input to SYMRPJ and SYMPW is information about the primitive 
crystal unit cell and the space group. The primitive lattice vectors (2.1) are given by 

(al, a2, a3 = (I 1 Cl A 03 YT a (6.1) 

where the elements of the matrix A are given as input to the programs. The space 
group is given by an index for the point group Gp and, for nonsymmorphic space 
groups only, the nonprimitive lattice translations ui . 

For SYMPRJ one must also give the number of chemical elements, the number 
of atoms of each element and the positions ir. of the atoms. 

After this information the input may contain as many vectors k as wanted. For 
SYMPW the input must contain for each k-vector the vectors Kn of (4.4) defining 
the plane waves #kn to be included in the basis. The program itself extends this 
basis according to (4.6)-(4.8). 

The program then produces the orthonormal columns of the projection matrix 
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jkS,, according to the theory described in the previous sections. First the program 
determines if k lies in the Brillouin zone or on its boundary. Then it forms Pk and, 
if necessary GL/Tk . Then it calculates all irreps of PI, or Gk/T, and Selects the 
allowable irreps. In SYMPRJ the sets G(t+, v) and the lattice vectors I@‘, TV, v) are 
also determined. Then all information to form the projection matrix (5.38) or 
(4.13) is available, and its elements are calculated for each irrep. After the ortho- 
normalization of the columns of the projection matrix these columns are printed. 

The programs have been written in Fortran for IBM360/75 in Stockholm. 
Detailed program description are available from Quantum Chemistry Program 
Exchange, Chemistry Dept., Indiana University, Bloomington, Indiana or directly 
from the authors. 

8. CONCLUSION 

In this paper the theory of symmetry projection is given only for single space 
groups, since our programs were written for this case. Extensions to double space 
groups and magnetic space groups are not difficult. One can again reduce the 
problem of 8nding their irreps to construction of irreps of finite groups. 

At present the programs have been written for up to four-dimensional irreps. 
But when more computer space becomes available it will just be a question 
of changing dimensions of arrays, to extend the programs to six-dimensional 
irreps, which occur for some k-vectors in a few space groups. 

We are able to produce tables of symmetry adapted functions for all the space 
groups with our programs, but at present we do not plan to do so. The resulting 
output material would be so voluminous, that it would have to be edited in some 
coded form. It would then take a reader as much time to learn this code as it takes 
to learn to handle our programs, with which he can produce all the information 
for the relevant space group and k-vectors within a few minutes of computer time. 
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